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We performed a theoretical investigation of the progression of a finger of air through 
a liquid-filled flexible-walled channel - an initial model of pulmonary airway 
reopening. Positive pressure, P,T, drives the bubble forward, and separates flexible walls 
that are modelled as membranes under tension, T,  supported by linearly elastic springs 
with elasticity K.  The gap width between the walls under stress-free conditions is 2H, 
and the liquid has constant surface tension, y ,  and viscosity: p .  Three parameters define 
the state of the system: Ca = p Lily is a dimensionless velocity that represents the ratio 
of viscous to capillary stresses ; TI = T / y  is the wall tension to surface tension ratio, and 
r = K P / y  is the wall elastance parameter. We examined steady-state solutions as a 
function of these parameters using lubrication analysis and the boundary element 
method. 

These studies showed multiple-branch behaviour in the <,$a relationship, 
where Pb = P,* / ( y /H)  is the dimensionless bubble pressure. Low Ca flows 
(Cu -+ min (1,  ( P / q ) ' ' 2 ) )  are dominated by the coupling of surface tension and elastic 
stresses. In this regime, Pb decreases as Cu increases owing to a reduction in the 
downstream resistance to flow. caused by the shortening of the section connecting the 
open end of the channel to the fully collapsed region. High Ca behaviour 
(max ( 1, (P/T/ ) ' '~)  + Ca + 7) is dominated by the balance between fluid viscous and 
longitudinal wall tension forces, resulting in a monotonically increasing P,-Ca 
relationship. Increasing or decreasing T reduces the C'a associated with the transition 
from one branch to the other. Low Ca streamlines show closed vortices at  the bubble 
tip, which disappear with increasing Ca. 

Start-up yield pressures are predicted to range from 1 d P;ip2d/(y/L*) 6 2, which is 
less than the minimum pressure for steady-state reopening, P;,,/(y/L*), where L" is the 
upstream channel width. Since PEirld < P;in, the theory implies that low Ca reopening 
may be unsteady, a behaviour that has been observed experimentally. Our results are 
consistent with experimental observations showing that P,T in highly compliant 
channels scales with y /L* .  In contrast, we find that wall shear stress scales with y / H .  
These results imply that wall shear and normal stresses during reopening are 
potentially very large and may be physiologically significant. 
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1. Introduction 
The lung consists of many generations of liquid-lined compliant tubes that conduct 

air to and from the alveoli - the primary site of gas exchange with the blood. Closure 
of small airways occurs in healthy adults at low lung volumes, in those with either 
emphysema or cystic fibrosis, and in infants with Respiratory Distress Syndrome 
(RDS). Such closure occurs owing to the formation of a liquid occlusion that hinders 
gas transport through the peripheral airways. Depending upon the duration of time 
these airways remain collapsed, such occlusion may be physiologically significant. 

Infants at birth have lungs that are filled with liquid. The first several breaths force 
a bubble of air through the bronchial tree, allowing gas exchange to occur. However, 
infants with RDS lack significant quantities of surfactant, which raises the effort 
needed to inflate the lung, and leaves portions of the lung atelectactic. Although 
surfactant replacement therapy has been useful in treating this disease, recent data 
show that 5000 deaths/year in the United States may be attributed to RDS (Wiswell 
& Mediola 1993). It is important to understand the mechanisms used to open these 
airways in order to develop improved therapies for RDS. 

In addition, patent airways may close when the lining fluid and/or walls become 
unstable, creating either a ‘meniscus occlusion’ that obstructs an otherwise air-filled 
bronchus, or ‘compliant collapse’, where fluid forces buckle the walls, which are held 
in apposition in a ‘ ribbon-like’ configuration by the adhesive properties of the lining 
fluid (Greaves, Hildebrandt & Hoppin 1986; Kamm & Schroter 1989; Macklem 1971). 
It has been hypothesized that this closure is a consequence of the Raleigh instability of 
the airway/lining-fluid system. A number of theoretical studies analysing stability 
characteristics of this system have appeared in recent years (Johnson et al. 1991 ; Otis 
et al. 1993). Halpern & Grotberg (1992, 1993) showed that wall collapse and meniscus 
formation are a coupled event, and this coupling can significantly impact closure. A 
general review of the subject appears in Grotberg (1994). At present, no theoretical 
models of airway reopening exist that include fluid, elastic and surface-tension 
interactions. 

In this paper, we analyse a model of a flexible-walled channel that is opened by a 
semi-infinite bubble that separates the walls, as shown in figure 1. This paradigm is 
based upon observations (Macklem, Proctor & Hogg 1970; Naureckas et al. 1994; Yap 
et al. 1994) that inflation of closed bronchi requires the peeling apart of opposing walls 
that are held in apposition in a ribbon-like configuration by the viscous lining fluid 
with fluid viscosity and surface tension y.  The reopening process is characterized by 
the velocity of the air bubble, U,  and an applied bubble pressure, Pz, which is the 
pressure with respect to the external pressure surrounding the airway (including the 
peribronchial pressure). 

This model has features that are common with two classical fluid mechanics 
investigations. The first is two-phase flow in either a rigid channel or tube, where a 
finger of air is forced through a viscous fluid contained between two narrowly spaced 
plates separated by a distance 2L* or within a rigid tube of radius R* (Saffman & 
Taylor 1958; Bretherton 1961 ; Park & Homsy 1984; Reinelt & Saffman 1985; Halpern 
& Gaver 1994). The fundamental parameter for these systems is the capillary number, 
Ca = p U / y ,  which represents the relative magnitude of viscous to capillary stresses. 
Park & Homsy (1984) described the asymptotic regimes for this system. For Ca < 1, 
the bubble tip forms a capillary-statics region with a semi-circular (spherical for a tube) 
geometry. Owing to surface tension, this curved interface induces a pressure drop 
across an upstream transition region that connects the bubble tip to the uniform film 
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FIGURE 1. Schematic of the model system. Positive pressure, P,* forces a semi-infinite bubble 
through viscous fluid contained within a flexible-walled channel. 

region far upstream. In the transition region, the fundamental balance is between 
surface tension and viscous forces. The pressure difference across the transition region 
sucks liquid around the bubble tip (in the laboratory frame) and helps to pull the 
bubble forward. However, in the limit of Ca +. 0, the film thickness in the transition 
region becomes infinitesimal and the pressure jump across the meniscus approaches 
y/L* for a channel or 2y/R* for a tube. This pressure jump can thus be considered to 
be a minimum pressure for initiating bubble motion, and thus we regard this to be a 
yield pressure, P:jeld, for the system. 

As Ca increases, the interfacial pressure jump increases monotonically. However, 
there is no reference pressure in the system for non-zero Ca, so Pz is not defined. This 
is a result of the rigid walls and parabolic flow field that extends to infinity. If the walls 
were finite in length, Pz could be defined with respect to the exit pressure. In this case, 
Pz would be time-dependent for a fixed U, owing to the shortening of the parabolic 
flow field downstream of the meniscus as the bubble moved forward, and the 
commensurate reduction of the total viscous pressure drop. So, the finite length rigid- 
walled system does not have a steady-state pressure-velocity relationship. In the 
present study, we will show that wall flexibility allows a steady-state response, by 
shortening the region where flows exist to a neighbourhood, albeit sometimes very 
long, of the bubble tip. 

Another fundamental model that relates to the present study was investigated by 
McEwan & Taylor (1966), who examined the peeling of a flexible strip that was 
attached to a rigid wall by a viscous fluid that acts as an adhesive. In this example, there 
is no applied Pt  ; the tape peels by application of wall tension, T, at a fixed angle. This 
reduces the pressure in front of the meniscus and sucks the meniscus forward. This 
mechanism exists in the airway reopening model ; however, the angle is not predefined 
because the wall is a free surface that modifies its location as a function of the 
parameters in the problem. 

Several experimental studies have been used to investigate the reopening system. The 
first was performed by Gaver, Samsel & Solway (1990), using compliant polyethylene 
tubes lined with viscous fluids. This study indicated that the fundamental lengthscale 
for reopening was based upon R*, the upstream tube diameter. This study also 
indicated the presence of a yield pressure, - 8y/R*, that was necessary to initiate 
reopening. These studies were used to predict reopening pressures under a number of 
different disease states. More recent studies by Hsu, Strohl & Jamieson (1994), and 
Perun & Gaver (1 995 a, b)  indicate that P,*ieLd may be lower than original estimates, and 
is a function of the airway geometry. Experiments by Perun & Gaver (1995 6 )  identified 
the importance of external wall stress on reopening. These studies showed that 
increased peribronchial stress can cause a commensurate decrease in the P,* necessary 
to open the airway. 
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Experimental investigations have been performed in situ by Naureckas et al. (1994) 
and Yap et al. (1994). These studies showed reopening pressures that were consistent 
with the estimates by Gaver et al. (1990). However, the studies by Yap et al. (1994) 
demonstrated that airway stability was a function of the tethering forces on the airway. 
When parenchymal tethering was small, airways would recollapse after reopening. This 
behaviour further indicates the significance of airway tethering forces in the system. 

The goal of this study is to analyse a theoretical model of airway reopening. In this 
study, we investigate the fundamental behaviour resulting from the steady-state 
motion of a semi-infinite bubble that moves symmetrically between two compliant 
walls as shown in figure 1. We seek solutions for the bubble and airway geometry, and 
the relationship between the applied bubble pressure, P:, and bubble velocity, U. In 
addition, we will calculate the interfacial surface velocities, the normal- and shear- 
stress distributions on the airway wall, and the flow patterns resulting from the bubble 
motion. We acknowledge that this model is a simplified representation of a true 
pulmonary airway reopening; however, we believe that this initial study will clarify the 
mechanical responses of the system, and thus provide an analytical basis for 
understanding airway reopening phenomena. 

2. Formulation 
2.1. Model description and assumptions 

Figure 1 provides a schematic description of the airway model. As described above, in 
this model, a semi-infinite inviscid bubble of negligible density resides within a fluid of 
Newtonian viscosity p, and constant density p. The interfacial tension, y, is constant. 
The viscous fluid is constrained between membrane-like channel walls with constant 
longitudinal tension T supported elastically with a constant modulus of elasticity K. 
The wall has stress-free top and bottom positions defined at y* = +H.  Airway 
reopening occurs when a positive bubble pressure, P z ,  is applied, which separates the 
walls to a distance 2L* = 2(Pc/K+H),  and forces the bubble to translate downstream 
(towards the right in figure 1) with a steady-state velocity U. In this model problem, 
we seek solutions that are steady-state in a frame fixed to the translating meniscus tip. 
We model this problem in Cartesian coordinates x* = (x*, y*)  fixed to the bubble tip, 
with velocity components u* = (u*, v*). x* represents a coordinate in the direction of 
bubble motion. 

2.2. Scales 
The governing equations are scaled as follows: 

x" = Hx, u" = uu, p* = Yp. (2.11 H 

The velocity scale, U, can be related to the two-dimensional flow rate of air into the 
system by Q* = 2U(L* - H ) .  The pressure scale, y / H ,  represents a pressure drop due 
to an interfacial radius of curvature equal to H.  Here, an asterisk represents a 
dimensional quantity of the associated scaled quantity. Another plausible lengthscale 
for this problem is L*, the upstream wall separation. However, owing to its dependence 
upon P:, this choice is not advisable in the mathematical formulation. Nevertheless, 
in $6.1 we show that in some cases this lengthscale (and the related pressure-scale 
y /L*)  more appropriately describe the behaviour of the system. 
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2.3. Dimensionless governing equations and parameters 
We assume slow viscous flow, and thus the Navier--Stokes equations for the liquid 
phase may be approximated by Stokes flow equations and continuity, which in scaled 
form are 

V P  = CaV2u, V.u = 0, (2.2) 
where the capillary number, Ca = p U / y  represents the ratio of viscous to capillary 
stresses and can be considered a dimensionless bubble tip velocity. 

The dimensionless interfacial stress conditions are given by 

d2) n = - ( K ~ ~ ~  - Pb) n at y = ym,  (2.3) 
where y = y,n represents the meniscus position, and n = (nz. nu) is the viscous fluid 
outward-facing normal. The interfacial surface curvature is defined as K~~~ = V;n, 
where V, = (I-nn) a V is the surface divergence vector. cd2) = -PI+ Ca(V7u + VuT) is 
the airway lining fluid stress tensor, and we have assumed that the bubble viscosity is 
negligible, so the stress tensor for the bubble is d l )  = - P,I. In this model, we have 
excluded surface tension variation along the interface that could be caused by a non- 
uniform surfactant distribution. For this reason, interfacial shear stresses cannot be 
sustained. 

We assume that the wall is massless and inextensible, and is supported elastically in 
only the y-direction with springs allowed to translate freely in the x-direction. In 
dimensionless form, the wall stress condition for the bottom wall is thus 

n . @ . n  = - V%JaLL + KY + 1) n2/ at Y = Yzc, (2.4) 

where y = y, defines the wall position, yw = - 1 is the bottom wall stress-free position, 
and K , , ~ ~  = V;n  is the wall curvature. 7 = T / y  is the dimensionless wall tension, and 
r = K P / y  represents the dimensionless wall stiffness. The external pressure is the 
reference pressure for the system. Limitations related to approximations used to derive 
this relationship are described in $6.4. 

Under steady-state conditions with respect to the meniscus tip frame of reference, 
wall disturbances propagate as a travelling-wave at the same rate as the meniscus tip. 
This implies that 

u = nE- 1, v = nzny  at y = y,. (2.5) 
We assume that in the laboratory frame, no flows exist as x* + & cc. Also, global 

conservation of mass implies that the film thickness as x+& cc must equal H.  In the 
meniscus frame of reference, the dimensionless downstream conditions are therefore : 

where e ,  = (1 ,O).  Far upstream of the meniscus, the applied bubble pressure results in 
a wall separation of 2L* = 2(P,*/K+H). In dimensionless form the upstream 
conditions are : 

1 u + - e ,  
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Our goal is to determine the functional relationship between Pb and the parameters 
Ca, r, and 7 that describe the physical properties of the system. To do so, we seek the 
solution of the double free-surface boundary-value problem described by (2.2)-(2.7). 
This solution will provide the wall and interface shapes as well as the velocity and stress 
distribution in this problem. We solve this problem using two approaches: an 
analytical lubrication theory analysis, and a computational approach using the 
boundary-element method. These methods allow us to describe this system over a large 
range of the parameters. 

2.4. Macroscopic momentum balance analysis 
To understand the behaviour of the system, it is instructive to examine a control- 
volume analysis of the x-component of momentum. In this analysis, consider a control 
volume moving with constant velocity U, surrounding the bubble tip with vertical 
boundaries far upstream and downstream of the tip. Let the boundaries connecting 
these segments trace the inside of the wall, in contact with the fluid. Far downstream 
the walls are in their stress-free locations ( yw = & l) ,  and upstream the wall is displaced 
to a constant location defined by Pb(yw = f L), where L = L*/H = P b / r +  1. Since the 
flows through the left- and right-hand sides of the control volume are identical, and the 
downstream pressure is zero, 

Here, (7,JwUll is the x-component of stress on the wall, (7JwuLL = - ( e Z - d 2 ) . n ) ,  where 
n is the fluid outward-facing normal. Clearly, (7s)wu21 depends upon the flow field, and 
thus is a function of Ca, 7 and r. This behaviour will be examined below. Also, r 
influences the magnitude of Pb by setting the upstream channel width. Reducing r 
results in an increase in L, reducing the magnitude of pb assuming (7JwaLL is held 
constant. Below we describe the relationships between the flow parameters and the 
behaviour of the system. 

3. Methods of solution 
Two different approaches to the analysis of this problem are used. Lubrication 

theory is described in $3.1, and the boundary-element method is described in $ 3.2. The 
solutions provided by each method contribute novel insights concerning the physics of 
the bubble progression through the flexible channel, as will be discussed in 95. 

3.1. Lubrication theory 
Lubrication theory is used to analyse this system for a number of reasons. First, this 
method describes the salient physics at low Ca, and thus provides important insight 
into this regime. Secondly, since the solution is asymptotically accurate as Ca-tO, it 
provides important validation of the boundary-element approach. At the ends of the 
domain, lubrication theory is justifiable because variations of the flow field in the 
x-direction are smaller than variations in the y-direction. This occurs upstream of the 
bubble tip (region I) because the thickness of the liquid layer is small compared to 
the axial lengthscale of the bubble, and far downstream of the tip (region 11) because 
the channel walls are almost parallel to each other. An arc-length formulation of the 
bubble-tip region is used to match regions I and I1 to provide a complete solution. The 
accuracy of the arclength formulation is described below. The lubrication approxi- 



Bubble motion through a flexible-walled channel 31 

mations for regions I and I1 are important to the boundary-element formulation 
because they are used as end-conditions for the boundary-element solution in order to 
truncate the boundary-element domain, as discussed in Q 3.2. In addition, the 
lubrication approximations of regions I and I1 are important to the scaling arguments 
given in 5 5. 

Region Z (upstream region) 
We assume that fluid inertia is negligible and that the fluid is Newtonian and 

incompressible. Since away from the tip the film thickness is much smaller than the 
length of the bubble, the dimensionless momentum equations (2.21) in the horizontal 
and vertical directions 

(3.1 a, b) 

where p is the fluid pressure and u is the horizontal fluid velocity. At the air-liquid 
interface, y = y ,  = f (x ) ,  the interfacial tangential and normal stress conditions (2.3) 
are approximated as: 

At the wall, y = y ,  = h(x), the normal stress condition (2.4) reduces to 

(3.2a, b)  

(3.3) 

The velocity field is determined by integrating (3.1 a) twice with respect toy. By using 
the fact that the dimensionless axial flow rate is given by 

fh 
Q = J  u d y = - l ,  

f 

the following expression for the pressure gradient is obtained : 

ap - 3Ca 
ax (h - f )3  (1 -h+.f). 

(3.4) 

(3.5) 

A system of ordinary differential equations for h and f is then obtained by 
substituting the linear wall equation (3.3) into (3.2b) and (3.5): 

(3 .6~)  

f” + qh” = T(h  - L), (3.6b) 

where h‘ = dh/dx and f’ = df/dx. In this transition region, both viscous forces and 
surface-tension forces are important. As x --f - 00, both interfaces become uniform, 
h+ L and f- L-  1, and Pb = T(L- 1 ) .  A rescaling of x,  such that x = (~CU)-”~X 
is applied when solving the above equations numerically. This scaling is based on the 
rigid tube result in the limit of Ca-iO, and is appropriate for the transition region 
between the constant film thickness region and a constant curvature ‘capillary-statics ’ 
region (Landau & Levich 1942; Bretherton 1961; Park & Homsy 1984). For the rigid- 
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channel case, h is constant and (3.6) reduces to the Landau-Levich equation for the 
film thickness, h- f ,  (equation (12), Landau & Levich 1942). This equations is relevant 
to a wide variety of capillary-dominated flows. This scaling is still useful even though 
we do not employ the constant curvature condition in the arc-length formulation of the 
bubble tip described below. Appendix A describes the linearization of this system for 
use in determining the upstream condition for region 1. 

Region 11 (downstream region) 

by setting f = 0 in (3.6a) and is therefore given by 
The governing equation for the wall position, h, in the fluid-filled region is obtained 

( A -  1) yh”’ - Th’ = 3 Ca - h3 ’ (3.7) 

with h + 1 as x + co. Appendix A provides the solution to the linearized form of this 
equation for use as a boundary condition for region 11. 

Note that for y = 0, h is purely decaying, but there is only one eigenfunction. In this 
case, the wall shape is determined by the analytic solution 

where h, is the wall displacement at the bubble-tip location. 

Arc-length formation 
In the bubble-tip region, it is valuable to use the arclength of either the air-liquid 

interface or the wall as the independent variable. This coordinate transformation 
permits the interfacial and wall curvature to be expressed exactly, and smoothly 
incorporates the bubble tip into the model. This approach includes all the terms that 
are important in the lubrication theory regions and capillary statics region, and thus 
eliminates the need to truncate the lubrication domain and fit a semi-circular cap to 
complete the bubble tip, as was done by Bretherton (1961) and Park & Homsy (1984) 
in their lubrication analyses of bubble motion in a rigid channel. This method was 
successfully used to study the motion and deformation of red blood cells through liquid 
filled capillary tubes (Halpern & Secomb 1989, 1991) and to study viscous fluid 
displacement by long air bubbles (Ratulowski & Chang 1990). 

Halpern & Secomb (1991) have shown that although the arc-length formulation uses 
lubrication approximations in regions where the gap is not uniformly narrow, the 
pressure drop and speed can be accurately evaluated. This is true because errors due 
to lubrication approximations where film thicknesses are large are relatively small in 
comparison to the total pressure drop in the system in regions where film thickness is 
small. Comparison of solutions of semi-infinite bubble motion in a rigid channel using 
these techniques with solutions by Halpern & Gaver (1994) using the boundary- 
element method show that the arc-length formulation extends the accuracy of the 
lubrication solutions to Ca - 0.1. In the flexible-walled system the accuracy may 
extend to even larger Ca under values of r and y where large pressure drops occur 
away from the bubble tip. 

We define 8 to be the angle between the tangent to the air-liquid interface and the 
horizontal, # to be the angle between the tangent to the wall and the horizontal, and 
s1 and s, to be respectively the arc lengths measured along the air-liquid interface and 
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wall. Since ds,/ds, = cos $/cos 8, the governing equations in region I can be expressed 
in terms of only one independent variable, s, 

dx 
- = COSH, 
dJ1 

(3.9a) 

g = -sin8, (3.9b) 
ds1 

dp 3Ca 
ds, (h-f)S 

( 1  -h+f)cosH, - 

- = -tan $ cos 8, dh 
ds, 

(3.9 c)  

(3.9d) 

(3.9e) 

Note that 3.9(c) is the normal stress condition at the air-liquid interface (3.2b), and 
(3.9b,,f) arise from the wall equation (3 .3) .  Equation (3 .9d)  shows that as the film 
thickness (h  -,f) becomes large, the pressure gradient decreases in proportion to 
(h-f)-'. At low Ca, ( 3 . 9 4  is thus consistent with the constant curvature assumption 
of the capillary-statics regime used by Bretherton (1961) and Park & Homsy (1984). 

Likewise, the equations in region I1 are given by: 

dx 
- = cos $, 
ds, 

- = -sin $, 
dh 
ds2 

3 - 1  - - ( P - f ( h -  1)cOs $), ds, r * -- -3Ca( l -h)cos$ .  
ds, h3 

(3.10) 

Equations (3.9) and (3.10) are solved simultaneously using a finite-difference method. 
The required boundary conditions are obtained by linearizing the governing equations 
at x + k m as described in Appendix A, and by applying matching conditions on h, $, 
p , f ( J ' =  0) and H (8 = in) at the bubble tip (x = 0) where regions I and I1 meet. Hence, 
for given values of Ca, r and 9 ,  we can uniquely determine the wall and air-liquid 
interface, h and ,f: Pb is determined from the far-upstream wall position using (3.3). 

3.2. Boundary element method 
The solution for the velocity field resulting from Stokes flow is obtained in terms of 
single- and double-layer potentials by taking Fourier transforms of equation (2.2) and 
applying Green's theorem (Ladyzhenskaya 1963) : 

. c  

(3 .11)  
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S represents the boundary surface and 7i = c i jn j  with i, j equal to 1 (x-direction) or 2 
(y-direction). As x approaches a point on the boundary surface, the solution of (3.11) 
becomes : 

(3.13) 

where x E S, and the tensor Cki accounts for stress discontinuities at the surface. Cki = 
&9ki if the boundary is smooth, but has a more complicated structure if the domain 
has corners (Brebbia & Dominguez 1989). Equation (3.13) is solved numerically by 
discretizing the boundary into N 3-point (quadratic) elements, so that 

where u and 7 are discretized along the domain, and represented by quadratic 
polynomials. 

Equations (3.14) is represented by a system of linear equations 

HW = Gt, (3.15) 

where H and G are, respectively, 4N x 4N and 4N x 6N matrices, and wzjp1 = uj, 
w 2i = v., 3 = 7zj, tZi = 7yj for j  = 1,2,. . ., 2N. Matrix G is made larger than H to allow 
the stress vector to have two distinct values at corner points because of two possible 
orientations of the normal vector. This is particularly useful at corner points (see 
Appendix B). The elements of H and G are computed using a 10-point regular 
Gaussian quadrature if x does not coincide with one of the node points of Sj. Otherwise 
a 10-point logarithmic quadrature is used to evaluate those portions of the integrals in 
(3.14) that contain the logarithmic singularity. The diagonal coefficients of H are 
computed indirectly by imposing a uniform flow in both the x- and y-directions. We 
then apply the boundary conditions and rearrange the system so that Az =f, where A 
is a 4N x 4N matrix, z is a 2N vector containing the unknown velocities and stresses and 
f contains the known stress or velocity information. This system is solved using 
Gaussian elimination with partial pivoting. 

Domain truncation 
It is not practical to extend the boundary-element domain to be large enough to 

satisfy the end conditions provided by (2.6) and (2.7). For this reason, the domain is 
truncated to a neighbourhood of the bubble tip, and we attach lubrication 
approximation conditions on the left- and right-hand boundaries. Since the problem is 
symmetric about the centreline, we analyse only the bottom half of the domain, as 
shown in figure 2. Segements A ,  B, C, D and E represent the boundary segments. Fluid 
stresses and velocities along domain segments B and E are provided by regions 1 and 
2 lubrication approximations, respectively. These approximations are calculated to 
match the wall position and curvature at ends of the domain (xright and xieft). To 
couple the lubrication solutions to the boundary-element domain, the cubic splines that 
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FIGURE 2. Description of the half-,domain used for the boundary-element computations. 
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FIGURE 3 (a) Description of the coupling of the boundary-element domain to lubrication theory 
end-conditions, Ca = 0 2, r = 1 0,  7 = 250, (b)  diagram indicating the physical aspect ratio for this 
system 

define the wall in the boundary-element regime use specified end-conditions that match 
to the lubrication wall slope as provided by (A 4) and the solution of (3.7). Iteration 
of the end-wall conditions is incorporated into the wall position iteration described 
below. Figure 3 (a)  demonstrates the coupling between the boundary element and 
lubrication approximation domains. Figure 3 (b) shows these profiles in the physical 
aspect ratio. Extending the boundary-element domain beyond the neck region is not 
necessary, although doing so improves the rate of convergence to the steady solution. 

Iteration procedure 

state meniscus shape exists when boundary conditions (2.3)-(2.5) are satisfied with 
Equation (3.15) relates the stresses (7) and velocities (u) on the domain. A steady- 

u.n = 0 at y =ym(x , t ) .  (3.16) 
Given an initial domain, the known values of T on the air-liquid interface are given by 
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(2.3) and the values of u on the wall are provided by (2.5). The solution of (3.15) 
provides the unknown interfacial velocities and wall stresses. To satisfy the remaining 
boundary conditions, an iterative procedure is used to determine the correct domain 
shape and Pb that satisfy (2.4) and (3.16) for fixed values Cu, 7 and r. 

The iteration process sequentially modifies the air-liquid interface shape, Pb, and the 
wall shape to find a steady-state solution. Given Ca, 7 and I', an initial domain and an 
estimate of Pb, the interface is modified using the kinematic boundary condition, 

n = u-n ,  
D Y  -. 
Dt (3.17) 

where Y = (x,(s, t) ,  ym(s, t))  is the interfacial position vector, s is the arclength, and t 
is time, but is used as an iteration parameter to find the steady-state response. This is 
solved using the Adams-Bashforth method. 

Periodically, a Newton's method is used to adjust Pb so that the bubble tip remains 
stationary, retaining the bubble-tip frame of reference. For a given wall shape, the 
interface is assumed to be steady-state when max (uinterface-n) < 1 x This interface 
is used to calculate wall stresses while we apply Newton's method to reposition the wall 
to satisfy (2.4). After wall relocation, the meniscus may no longer satisfy the steady- 
state criterion, and thus the meniscus iteration (3.17) is repeated. Iteration continues 
until max(uinterface.n) < 1 x lop3 with a maximum dimensionless wall stress deviation 
< 1 x Reducing the convergence criteria by a factor of 10 results in only a small 
change in the final solution (- 1 % change in Pb), and therefore these criteria are 
deemed suitable for calculating the steady-state solution. Implementation consider- 
ations regarding the accurate administration of the boundary-element method to 
this problem are discussed in Appendix B. 

4. Results 
The computations performed on this system using the boundary-element method 

and lubrication theory span the parameters Ca, r and 7. We regard as a basic state 
the following dimensionless parameter set: Ca = 0.5, 7 = 100 and r= 0.5. When 
investigating the influence of a particular dimensionless parameter, we will compare the 
behaviour to that of this basic state with the remaining parameters held constant. In 
figures presented below, we explore each of the parameters to demonstrate its influence 
on specific characteristics of the system. These are the dimensionless bubble pressure, 
Pb = P z / ( y / H ) ;  the dimensionless radius of curvature at the bubble tip, Rti, = 
R,*i,/H; the dimensionless interfacial pressure drop at the bubble tip, AP = 
AP*/(y/H),  and the dimensionless upstream channel width, L = L*/H. In addition, 
for unique values of the spanned parameter, we demonstrate specific domain shapes 
and wall shear and normal stresses. 

The injluence of Ca 
The influence of Cu is shown in figures 4(a-d), 5 (a-d) and 6 (a-b). Figures 4 ( u P ( d )  

show the general behaviour of the system over 0.05 < Ca d 2.0 with v =  100 and I' = 
0.5. From these figures, the most striking response of the system is the non-monotonic 
relationship between pb and Cu, shown in figure 4(u). For Cu small (Cu < 0.3), an 
increase in Cu requires a decrease in Pb; however, for Ca > 0.3, an increase in Ca is 
accompanied by a rise in Pb. Lubrication theory (dotted line) predicts this turnaround, 
but underestimates the rate of increase of Pb. The multi-branch behaviour of the Pb-Ca 
relationship is discussed in detail in $ 5 ,  below. 
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Figure 4(b)  shows that the boundary-element method predicts a minimum Rtt, at 
Ca - 0.9. However, lubrication theory predicts that Rti, decreases monotonically with 
Ca in the range examined. Figure 4(c)  shows that the system's response results in a 
monotonically increasing interfacial pressure drop. This suggests that the interfacial 
pressure drop creates a driving force for meniscus motion by 'sucking' the bubble 
forward. The fact that AP increases monotonically while Rti, at first decreases and then 
increases indicates the significance of the viscous normal stress when Ca - O(1). 
Finally, figure 4 ( d )  shows that the upstream channel width is a non-monotonic 
function of Ca, a response that is directly related to Pb. This figure shows that the 
upstream wail deflects to a width that is at least 5 times the downstream wall 
displacement width. 

Figures 5(a)-5(d) demonstrate the influence of Ca on the domain shape for Ca = 
0.1, 0.2, 0.5 and 1.0, with 9 = 100 and r= 0.5. These figures clearly show that 
increasing Ca causes a more radical wall deflection. Furthermore, the wall 'necks' 
inward downstream of the meniscus tip, and is deflected past the stress-free location 
before returning to y ,  = & 1 far downstream. This necking behaviour becomes more 
prevalent as Ca increases. Finally, increasing Ca results in the upstream portion of the 
bubble having a longer region of non-zero slope. 

Dimensionless wall normal (7,) and shear (TJ stresses are shown in figures 6 ( a )  and 
6(b). Note that 7, - (7JWolL in (2.8), owing to the small wall slope, and thus can be used 
to infer the influence of stress on the reopening pressure. The relationship between Ca 
and 7, is shown in figure 6(a) .  In the thin-film region of the bubble, the viscous lining 
has virtually a uniform velocity, so 7, - Po. Far downstream, the wall approaches the 
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stress-free location, and 7, - 0. For Ca = 0.2 and 0.5, Pb is nearly identical, indicating 
opposite branches of the data in figure 4(a). At the bubble tip (x = 0), the interfacial 
pressure drop (figure 4c) results in a decrease of 7,. Viscous stresses further reduce 7, 
downstream of the bubble at a rate that increases with Ca. In concert with the 
interfacial pressure drop, this stress gradient is the driving force for fluid motion in the 
system. In the region downstream of the bubble, wall curvature induces a region where 
7, < 0 owing to wall curvature influencing the wall-stress condition (2.4). This pulls the 
wall inward from its equilibrium position, creating the necking behaviour shown 
clearly in figures 5 ( c )  and 5(d). Note that the stress minimum for Ca = 1.0 has a 
magnitude that is equivalent to the stress maximum. For cases where Ca > 1, the 
location of the largest stress will occur downstream of the bubble tip, so the Pb may not 
accurately reflect the magnitude of the normal stress in the system. 

The influence of Ca on the dimensionless wall shear stress, 7,; is shown in figure 6(b) .  
Far upstream and downstream 7, + 0, since the velocity field is essentially uniform in 
those regions (the fluid is static in the laboratory frame). 7, is substantial in the 
transition between these two regions, with 7, > 0 near the bubble tip and 7, < 0 further 
downstream. The region with 7, < 0 corresponds to the site where the wall necks 
inward (7, < 0). In the laboratory frame, this would result in fluid moving in a 
direction opposite to that of the bubble in the vicinity downstream of the bubble tip. 
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Such retrograde fluid motion was reported in experiments by Gaver et al. (1990). This 
figure also shows that the magnitude of T,  increases with Ca; however, the length of 
the flow domain in which T,  is large decreases with increasing Ca. This influences the 

J-; (Tz)wall ds 

in (2.8), and relates significantly to the transition from the left-hand to right-hand 
branches of figure 4(a). This will be discussed in detail in 55.3,  below. 

The inzuence of 7 
Figures 7(a-d), 8(a-c) and 9(a, b)  illustrate the influence of the wall tension 

parameter, 7, on the behaviour of the reopening system with Ca = 0.5, T = 0.5. Figure 
7 ( a t ( d )  show the behaviour of specific characteristics over 10 d 7 < 250, while figures 
8 and 9 demonstrate domain shape and stress behaviour for 7 = 10, 100 and 250. 
Figure 7(a )  indicates that in this range of Ca (the right-hand branch of the P,-Ca 
relationship shown in figure 4a), increasing 7 requires that Pb increase. In addition, Rtip 
decreases slightly as 7 increases (figure 7b).  Together, these result in a small increase 
in the pressure drop across the meniscus tip, AP, as shown in figure 7 (c). Finally, figure 
7 ( d )  shows that the increased Pb required with larger 7 results in larger upstream wall 
deflections. 

Figures 8 (a-c) and 9 (a,  b) put the results of figures 7 (a)-7 ( d )  in context, and explain 
why increasing 7 necessitates larger Pb. Figure 8 shows that the major influence of 
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increasing wall tension is to stretch the transition from the bubble to completely 
collapsed section. This indicates that increasing 7 extends the region of significant flow 
downstream of the meniscus tip. The bubble tip geometry is not greatly influenced by 
the increase in 7, but the upstream wall deflection increases slightly. This increased 
deflection is due to the larger P,. 

Figure 9(a) shows that r ,  is influenced by 7. First, the upstream r ,  (- P,) increases 
with increasing 7, indicating that wall tension retards reopening. This result should be 
compared to that found by McEwan & Taylor (1966), who showed in their tape 
peeling studies that increased wall tension increased the rate of meniscus progression. 
However, in those models the upstream angle of incidence of the wall was held 
constant. In our model, the wall angle is not held constant; increasing 7 reduces the 
angle of incidence. Downstream of the bubble tip, r, < 0 owing to wall curvature. The 
magnitude of this negative stress (essentially a downstream suction pressure) increases 
with increasing 7, and can be larger than Pb. However, the location of the r, minimum 
moves downstream with increasing 7, and the normal stress gradient is not greatly 
influenced by 7.  This indicates that the pressure gradient is not greatly influenced by 
7. So, this behaviour cannot explain the increase in P, related to an increase in 7.  

Figure 9(b) demonstrates the influence of 7 on r,, and resolves the increase in Pb 
required with increasing 7. This figure shows that the extremum values of the shear 
stress are independent of 7, but the range of non-zero r, extends further downstream 
as 7 increases. This increases the 
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in (2.8) owing to the extended domain of fluid flow, and thus increases Pb. Apparently, 
increasing 7 results in an increase of the total viscous retardation of the bubble, which 
necessitates an increase of Pb in order to maintain the same bubble speed (Ca). 

The influence of r 
Figures 10-12 demonstrate the influence of the wall elastance parameter, r = K F / y  

on the reopening system with Ca and 7 fixed. This is equivalent to investigating the 
effect of elastance on the system by modification of the elastic constant K, or 
modification of the stress-free location of the wall, H. Increasing H causes an increase 
in the depth of the thin film surrounding the bubble, which may influence shear 
stresses. Figure 10(a) shows that variation of rcauses a large change in 9.. Increasing 
r by increasing K results in a stiffer system, and causes the dimensionless (and 
dimensional) bubble pressure to rise in order to preserve the same Ca. This behaviour 
is partially due to the reduction of the channel width, L, with increasing r, and hence 
a reduction of the area over which pressure is applied (figure 11). Furthermore, with 
increasing r, the range over which significant shear stress exists is extended (figure 
12b), increasing bubble viscous retardation. In order to compensate for each of these 
effects, Pb must increase, as described by (2.8). This result, in conjunction with figure 
lO(a), indicates that airways with smaller upstream widths require higher pressures to 
open, a behaviour agreeing with measurements made by Gaver et al. (1990). 
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The effect of increasing H can also be deduced from figure lO(a). At large T, Pb 
increases linearly with I-', indicating that Pz increases linearly with H. This increase is 
due to the fact that as T increases, the wall flattens and the system behaves more like 
that of a semi-infinite bubble progressing through a rigid channel. In this limit, the 
bubble-width to channel-width ratio (/3 = 1 -H/L*)  approaches a value that is 
dependent only upon Cu. For Cu = 0.5, the rigid channel result is indicated in figure 
lO(d). In order for the flexible-walled system to approach this result, the walls must 
separate further, necessitating an increase in Pb. So, in the regime where the flexible- 
walled system behaves as a rigid-walled channel, the linear wall equation used in this 
study results in the linear relationship between P$ and H seen in figure lO(a). Below, 
96.1, we re-analyse these data to determine whether the capillary pressure scale is better 
represented by y/L*, as indicated by experiments. 

Figures 10(b) and 1O(c) show the influence of T on Rtt, and AP, respectively. 
Increasing causes the tip to become slightly more pointed, owing to squeezing of the 
walls. This results in a modest increase of AP. This behaviour may compensate for the 
increased shear stress in the system as T increases. 

Streamlines 
Figures 13(a) and 13(b) demonstrate streamlines for Ca = 0.2 and Ca = 0.5 with 

r = 0.5 and 7 = 100. The most significant difference between the streamline patterns is 
the existence of a recirculation region near the bubble tip at low Ca, which disappears 
at higher Ca. This behaviour is similar to that predicted by Coyle, Macosko & Scriven 
(1986) in their analysis of film-splitting flows between two counter-rotating rolls. The 
vortices within the recirculation region are isolated from the remainder of the fluid in 
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the channel by a closed stagnation streamline (shown with a dotted line). Low Ca flows 
in rigid channels exhibit similar recirculation regions ; however, the vortices extend 
indefinitely (Reinelt & Saffman 1985), and thus are not isolated from the incoming 
fluid. For this reason, we speculate that surfactant transport in the flexible-walled 
system will differ fundamentally from that predicted in rigid channels (Ratulowski & 
Chang 1990). 

The disappearance of the recirculation region with increasing Ca is similar to that 
seen in parallel channel flows. The lack of recirculation is not a feature that is indicative 
of the right-hand branch - lower Cu flows in more compliant systems (lower r) exhibit 
recirculation similar to figure 13 (a)  while on the right-hand branch. Note that in figures 
13(a) and 13(b) retrograde motion in the laboratory frame is not demonstrated owing 
to the translation to the bubble-tip frame of reference. In the laboratory frame, 
retrograde flow exists near the necking location of the wall. 

5. Multiple branch behaviour of Pb-Ca relationship 
The results shown above demonstrate several interesting features of this system. The 

most fascinating behaviour is the non-monotonic relationship between Pb and Ca, 
which indicates that a given Pb can be associated with two distinct values of Ca. Below, 
we examine the influence of r a n d  7 on this behaviour. To explain the physics of each 
branch, we next examine the limiting cases appropriate for each branch, and derive 
scaling relationships for different regimes in the domain. These scalings are useful in 
understanding the dominant force balances, and identify the physical differences 
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between the left-hand and right-hand branches. Following the analysis, we demonstrate 
the transition from one branch to another, and show that this behaviour is consistent 
with the derived relationships. 

5.1. The influence of r and 7 on the relationship between Pb and Ca 
Figures 14(a) and 14(b) demonstrate the influence of wall elastance and tension on the 
pressure/velocity behaviour of the system. These figures show both lubrication and 
boundary-element results, and show that in some cases these predictions coincide for 
Ca = O(1). Figure 14(a) shows that the non-monotonic relationship between pb and Ca 
exists over a wide range of r. The turnaround from the left-hand to right-hand 
branches occurs at smaller Ca when r is reduced. This suggests that increased wall 
deflection (see figure 11) is responsible for the onset of the right-hand branch of the 
Pb-Ca relationship. Figure 14(b) shows that increasing 7 does not influence small Ca 
behaviour, but does reduce the Ca associated with a turnaround from the left-hand to 
the right-hand branches. This result implies that an extended transition from the fully 
open to fully closed portion of the channel might be responsible for the conversion 
from the left-hand to right-hand branches, as will be shown in 55.3. Together, figures 
14(a) and 14(b) indicate that the downstream suction pressure, created by the product 
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of wall curvature and tension (equation (2.4)), may also contribute to turnaround. 
However, this does not appear to be due to the suction’s influence on the downstream 
pressure gradient, as the pressure gradient (demonstrated approximately by figures 
6(a) ,  9 (a)  and 12(a)) is almost entirely a function of Ca. Comparing the lubrication 
theory to boundary-element results in figures 14(a) and 14(b) indicates that lubrication 
theory can accurately determine Pb when Cu - O(1) if T is  small. This good correlation 
can be understood by the scaling behaviour described below. 

5.2. Scaling relationships 
It is possible to identify asymptotic structures of the solutions within suitable ranges 
of the governing parameters. These scaling relationships are instrumental in 
understanding the left-hand and right-hand branches of the Pb-Ca relationship. We 
consider the limits Ca = p U / y  4 1, in which case surface tension forces are expected 
to dominate viscous forces, and Caly = pU/  T -+ 1, where wall tension forces dominate 
viscous forces. Since both limits are singular, it is likely that short transitional regions 
of rapid variation will exist in which surface (or wall) tension and viscous forces will 
be in balance. 

In this analysis, it is important to identify conditions in which the wall location is 
determined primary by either wall tension or by elasticity, since this helps determine 
the Ca ranges for the behaviour of interest. To do so, consider the flow ahead of the 
bubble where h = O(1). As described above, computations in this region show that the 
pressure gradient is largely independent of y and r, as can be seen in figures 9(a)  and 
12 (a).  This pressure gradient is determined predominantly by viscous stresses, which 
from (3.5) are of O(Ca). From the linearized wall equation ( 3 . 3 ) ,  the lengthscale over 
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which elastic forces operate is X,, = O(r/Ca).  Likewise, the lengthscale for wall 
tension forces is X,,, = O((7/Ca)1/3). These two lengthscales are comparable when 
Ca = O(Ca,), where Ca, = (r3/7)112. When Ca < Ca,, X,, % X,,, and we anticipate that 
the wall response ahead of the bubble will be dominated by elastic forces. In contrast, 
when Ca 9 Ca,, X,,, % Xel ,  and the dominant wall force ahead of the bubble is due to 
longitudinal tension. Below, we consider separately very small and very large values of 
Ca to understand the left-hand and right-hand branch behaviour. These limits are: (i) 
Ca < min (1, Ca,), where surface tension dominates viscous forces and elastic forces 
control the downstream wall response where h = 0(1), and (ii) max(1, Ca,) < Ca < 7, 
where viscous forces dominate surface tension forces and wall tension controls the 
downstream response. These limiting cases describe the physics of the left-hand and 
right-hand branches of the P,-Ca relationship, respectively, and are discussed below. 
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5.2.1. Lejt-branch behuviour (Cu < min (1, Ca,)) 
The domain for the small Cu parameter range is shown in figure 15(u), which is 

divided into 5 specific regimes of interest. Below, we derive the scales for each of these 
regions, and then use this information with (2.8) to identify the region that dominates 
the resistance to reopening, and thus sets the characteristics of the left-hand branch. 

Regimes 
Far upstream of the tip, a 'uniform bubble' regime exists where the bubble has 

nearly parallel sides, the fluid has a thickness h - f -  1, and P = Pb. At the bubble tip, 
surface tension stresses dominate viscous stresses, and, using the terminology of Park 
& Homsy (1984), a 'capillary-statics' region is anticipated to exist where pressure is 
nearly constant. So, the interface at the bubble tip is approximately semi-circular with 
a radius R, and the fluid pressure directly outside of the bubble tip is P - Pb - 1 / R .  

Between the 'uniform bubble ' and 'capillary-statics' regimes, a ' capillary-viscous ' 
transition region exists. Here, the pressure drop of AP = O ( I / R )  exists over a 
lengthscale A', ", say. This pressure drop occurs owing to a balance of surface tension 
and viscous forces. From (3.5), the viscous pressure gradient for a film thickness of 
0(1) is of O(Ca). So, the pressure drop across this region is AP = O(CaX,.-,) = 
O ( I / R ) .  Since from (3.2) AP = O(l/P,.-v), then X,. = O(Cap1"), and AP = O(Ca"'"). 



48 D. Gaver III, D. Halpern, 0. Jensen and J.  Grotberg 

( a )  Ca << min (1, Ca,) 

i J i  1- 
I ’  / /  I I ’  

FIGURE 15. Scaling relationships. (a)  Surface tension/wall elasticity dominated domain, 
Ca < min 1, Ca,); (b) viscosity/wall tension dominated domain, max (1, Cu,) < Cu 6 9. 

This pressure drop is identical to that identified by Bretherton (1961) and Park & 
Homsy (1 984) in lubrication analyses of semi-infinite bubbles progressing through 
parallel-walled rigid channels, and will be discussed below in 8 5.4. From this result, the 
tip radius of curvature is Rti, = O(Cn-2/3). Since the film thickness is only O(l), the 
channel width L = O(R) = O(Ca-”’>. This result provides an estimate of the bubble 
pressure, 

which decreases with increasing Ca. 
Directly downstream of the bubble tip an ‘inflated channel’ regime exists where the 

pressure inflates the elastic tube so that h = O(L) 9 1. From lubrication theory using 
(3.5) with f = 0, ap/dx = O(Ca/L2) = O(Ca’/’). The pressure in this regime decays 
from O(P,) to zero over the length XI-c, indicating from (5.1) that XI-c = O(rCa-’)), 
which is an extremely long region. Finally, this region attaches downstream to an 

Pb = O(rCa-2/3) Ca + min (1, Ca,), (5.1) 
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‘elastic-viscous’ region where h = O(1). Since Ca g Ca,, this region has a lengthscale 
XE.,, = O(X,,) = O(I‘/Ca). 

Resistance to reopening 
The macroscopic momentum balance given by (2.8) describes the balance between 

the applied pressure and the resistance to reopening provided by 7,. Examining each 
regime’s contribution to the resistance provides one explanation of the left-hand 
branch behaviour. 

Separating the 

( 7 . ~ ~ ~ 1 1  ds 

sequentially into components (left to right) based upon each of the 5 regimes described 
above and shown in figure 15 (a), 

IJniform Capillary- Capillary- Inflated- Elastic 
hubble visrous statics channel viscous 

= .(&I. (5.2) 

Each non-zero term representing the J ~ , d s  is separated into two components: the first 
is a measure of the local IT , [  for each region, and the second reflects the length of that 
region. In these approximations, IT,[ - Ca/(local gap width). The final result is 
identical to the asymptotic result derived above (5.1). This calculation shows that Pb 
must primarily overcome S ~ , d s  over the ‘inflated channel’ region. This result shows 
that the reduction of Pb with increasin Ca results from the shortening of the ‘inflated 
channel’ region, which reduces the {,ds even though IT,[ increases with Ca. This 
behaviour will be demonstrated in more detail in $5.3 with respect to the transition 
from the left-hand to the right-hand branches. 

A curious result of the analysis above is that the maximum local driving force 
&/ax) occurs in the ‘ capillary-viscous ’ regime, while the global retarding force is 
dominant in the ‘inflated channel’ region. Lubrication theory is capable of accurately 
predicting the behaviour at low Ca because the small slope approximations are 
accurate in both of these regions. 

5.2.2. Right branch behaviour (max(1,  Ca,) < Ca 4 v )  
The large-& asymptotic structure can be expected to exist for large values of 7, and 

is broken into 3 distinct regions, as shown in figure 15(6). Below we derive the scales 
for each of these regions and, as above, use this information with (2.8) to identify the 
region that dominates the resistance to reopening, and thus sets the characteristics of 
the right branch. 

Regimes 
For max (1, Ca,) 4 Cu, viscous forces dominate surface tension forces, and wall 

tension dominates elasticity when the film thickness is O( 1). If Ca 4 7, wall tension 
forces dominate viscous forces. Upstream of the bubble the fluid is static with respect 
to the channel wall, and when both constraints are satisfied, a ‘wall-statics’ region will 
dominate region I, where P = Pb uniformly. Far upstream the bubble inflates to a 
maximum width of O(Pb/I‘), and elastic and tension forces balance to contribute to the 
wall and bubble shape. From (3.3), this region has a length X ,  Ls = O((Y,I/~)”~). Note 
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that the wall in this regime is canted at a small angle over an extended length, a 
characteristic that is important in the calculation of 7, used below. 

Directly downstream of the ‘ wall-statics ’ regime, viscous forces dominate surface 
tension forces near the bubble tip in the ‘viscous nose’ region. Assuming that h = 0(1) 
in the neighbourhood of the tip, and that viscous normal stresses operate over a 
longitudinal lengthscale of X,-, = 0(1), the tip radius of curvature is 0(1), and the 
pressure drop across this region is thus O(Cu). Evidence in support of the ‘viscous 
nose’ region is given by figures 4(b) and 4(c) which show that the tip pressure jump 
decouples from the bubble-tip radius of curvature at high Cu. 

Downstream of the bubble tip, h = O( l), and a ‘ tension-viscous ’ region exists where 
the pressure drop occurs across a lengthscale XT-v = X,,, = o ( ( ~ / C a ) l / ~ ) .  From (3.5) 
the viscous pressure gradient is O(Cu), so that the total pressure drop is O(Ca XTdv) = 
0($’3 Ca2l3). Since Cu < 7, this contribution to the total pressure drop far exceeds 
that due to viscous stresses at the nose. Therefore, the bubble pressure in this limit is : 

Pb = 0(T1/3 C U ” ~ )  max (1, Cu,) < Cu < 7 (5.3) 
which increases with Cu, and in dimensional form is independent of the surface tension. 

Resistance to reopening 
From the scaling relationships derived above, it is evident that the right-hand branch 

behaviour is dominated by a balance between viscous fluid forces and wall tension, and 
that Pb given by (5.3) is independent of r. While the r-independence is not observed 
in figure 14(a), this may be due to the fact that simulations did not extend to high 
enough values of Cu or 7 to exhibit this behaviour. From the data presented in figure 
14(a), however, it is apparent that the slope of the right-hand branch is largely 
independent of I-, so at large Cu the relative deviation between Pb with different I- will 
be small. 

From the scaling analysis, it is clear that the major component of the pressure drop 
in the system occurs in the ‘ tension-viscous’ regime downstream of the meniscus, 
which increases in length with Cu. However, an alternative explanation to the right- 
hand branch behaviour arises by examining the control-volume momentum equation 
(2.8). Separating the 

JY, ( 7 ~ ~ ~ ~ ~  ds 

sequentially into components (left to right) based upon each of the 3 regimes shown in 
figure 15(b), 

Wall Viscous Tension 
statics nnse viscous 

= 0 ( ~ 1 / 3  ca2/3), (5.4) 
which is consistent with the scaling analysis above (5.3). As above, each term 
representing the s7, dx is separated into two components : the first is a measure of the 
local  IT,^ for each region, and the second reflects the length of the region. For the 
‘wall-statics’ region 1 ~ ~ 1  - Pbn, - (Pb) (L/XW-J - $/‘ Cu413/r1/2. This analysis shows 
the interesting result that the dominant term arises from the x-component of the 
normal stress (PJ in the ‘wall-statics’ region. So, although the majority of the pressure 
drop is distributed Over the ‘ tension-viscous’ regime, this drop is reflected in the x- 
component of the momentum balance in the wall-statics region. 
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The analysis of large-& reopening shows that the dominant regions are the 
‘ wall-statics’ and ‘ tension-viscous ’ regimes. Both regions are characterized well by 
small slope approximations, and thus their behaviour can be captured by lubrication 
theory. This correlation is shown in figure 14(a) for r= 0.1 (Ca, % lo-’). So, 
apparently, when r 6 1, lubrication theory is capable of describing the leading-order 
right-hand branch behaviour even through Ca - O(1). 

As shown above, the contribution of 17,ds to Pb shifts from the ‘inflated channel’ 
region downstream of the bubble tip in the left-hand branch to the ‘ wall-statics ’ region 
in the right-hand branch. In order to understand how r and 7 influence the transition 
behaviour, it is useful to explore the contributions of the upstream and downstream 7, 

following (2.8). From the low-Ca scaling analysis, it is evident that the left-hand branch 
results in a decrease in Pb with increasing Ca owing to the extreme reduction in the 
length of the ‘inflated-channel’ regime. We approximate the length of this regime in the 
computational domain as the distance (9) from the bubble tip to the x-location where 
h = 1. Figures 16(a)-16(c) show 9, the average downstream r , ( l ~ ~ l ) ,  and Jr,ds over 
this region for small q(7 = 2, r = 0.5), where turnaround is not prevalent. In contrast, 
larger q(q = 100, r = 0.5) and decreased I‘(q = 100, r = 0.05) moderates the rate of 
decrease of 9 (figure 16a). In addition,  IT^^^^^^, decreases with increasing 7 and is 
greatly reduced by decreasing r (figure 16b). In combination, these responses cause 

5.3. Transition from the left-hand to right-hand branches 

p (7z)wall  ds 

to increase with increasing 7 or r. More importantly, though, is that fact that the rate 
of decrease of 

(7z)wa1t ds 

with increasing Ca is greatly reduced for large Ca when q increases or r decreases. In 
fact, at large Ca when r is small or q is large, this contribution begins to slightly 
increase with increasing Ca, which is in sharp contrast with the behaviour observed for 
small 7. This response indicates that wall tension lengthens 9, and reduces the rate of 
decrease in 2’ with increasing Ca, and thus is partially responsible for the onset of the 
right-hand branch of the Pb-Ca relationship. Perhaps the downstream wall suction 
prevents the decrease in 2, resulting in this behaviour. However, this response alone 
does not completely describe the transition to the right-hand branch. 

To understand fully the transition behaviour, it is essential to examine the upstream 
contribution of 7,. Figure 16(d) shows the contribution to Pb from the 

0 J-& (7z)wu1L ds. 

This figure shows that the upstream contribution of 7, increases with increasing Ca 
when 7 is large or Tis  small. This results from the ‘wall statics’ region upstream of the 
bubble tip being held at an angle (figures 8, 11, 15 b), which causes the x-component 
of the normal stress (- Pb) to provide a significant contribution to r, over an extended 
distance. Increasing Ca extends the distance over which the wall is at an angle (figure 
5) ,  and thus increases the magnitude of 

( ~ z ) ~ l u l l  ds. 



52 D. Gaver III, D. Halpern, 

(a)  

- 
*-.  \ 

\ 

- a * \ .  , I -  

I ' " " " ' I  
0.1 1 

Ca 

(') 15 

-;3 
z 

r-" 

= 10-  
n 

W 

% o  5 -  + 
0 

10 (4 
-3 

jl - 5 -  
t-" 

- - 
W 

0 8  + 
0 

(el 20 

4- 15 - 
n 10 - 
- 
3 

%Y 5 -  + 
0 ,  

0. Jensen and J .  Grotberg 

'..i I 

- 
--____--- -- - 

. - ~ - ~ ~ . ~ - - - - - - . _ _ . _ _ _ _ _ . _ _ _ _ . _  .-. 
I I l l 1  I I I , , I ,  

I I , 
/ 

/ 
/ 
0 
I - 

I' 
/ 

-/&.-.-----a- 

...-._ic _.-- 
I I I I I  I I I I I t I I I  

I I 

I /- 
I 

// ---- - -, c -- \ - 

_ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ - . - ~ ~ ~ ~ - ~ ~ - - ~ ~  - 
I , " I  I 

0.1 1 

Ca 

For large 7 or small I', this behaviour begins to dominate the reduction of 

(~z )wazz  ds 

with increasing Cu, and results in the transition from the right-hand to the left-hand 
branches of the Pb us. Ca relationship, as shown in figure 16(e). 

In summary, we have shown that the left-hand branch of the Pb-Cu relationship is 
dominated by the coupling of surface tension and elastic stresses. Pb decreases with 
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increasing Cu owing to a reduction in downstream resistance in the ‘inflated channel’ 
region that is caused by a decrease in the  ST^ ds owing to the shortening of the regime 
with increasing Ca. The right-hand branch is dominated by an interaction of viscous 
and wall tension forces. The pressure drop occurs largely in the downstream 
‘ tension-viscous ’ region, but is dominated in the macroscopic momentum balance by 
the ‘ wall-statics ’ contribution. Increasing 11 or decreasing T shifts the dominant 
contribution of the j7,ds from downstream to upstream by tilting the upstream 
portion of the wall, inducing a large component of j~~ ds from the x-component of the 
normal stress upstream of the bubble, and causing P, to increase with increasing Ca. 

5.4. Comparison of lejt-branch to parallel-walled channel behaviour 
The scaling relationships for Cu + min (1, Ca,) in $5.2.1 provide information that is 
useful for further understanding the left-hand behaviour of the P,-Ca relationship. In 
particular, the interfacial pressure drop in the ‘ capillary-viscous ’ region, AP,  is of the 
same form as the Bretherton approximation (1961), implying that is this limit the 
system behaves as a parallel-walled channel. In addition, the scaling results show that 
wall tension does not determine the bubble pressure, a result that is consistent with the 
observations reported in figure 14(b). The behaviour in this regime is thus dominated 
by surface tension and wall elastic responses. 

To determine whether the left-hand branch response is consistent with parallel- 
walled channel behaviour, we improve the approximation of P, by considering the limit 
of Ca+O for the singular case of 9 = 0 using lubrication theory. In the limiting case 
of Ca + 1, numerical solutions of the system of equations (3.9) indicate that the wall 
is approximately uniform, h + h,,, and that the air-liquid interface has constant 
curvature, j ”  + - K. 

To evaluate K,  we investigate the bubble-tip regions I and I1 (the upstream and 
downstream regions) with constant interfacial curvature and channel width. Equation 

K 
f -- 2 X z + A X + B + z y +  ..., 

(5.5) 

where A and B are arbitrary constants, h, is the wall displacement at the bubble tip, 
h = (3Ca)(2’3)/r, and x = (3Ca)’I3x. The dependence of h andfon L can be clarified by 
recognizing that h” = h-L andf=f-(L- 1) removes L from (3.6). The solution of h“ 
andfdepends only on A. Note that since system (3.6) is autonomous, there exists a 
unique solution independent of the amplitude of the linearized solution used as an 
initial condition. From these solutions we obtain K z 0.64. 

Equation (3 .6b)  implies that L-h, - KA. Therefore, the pressure difference across 
the bubble tip is independent of r since, using the linear wall equation model, 

which is consistent with the scaling analysis above. This suggests that at low Ca the 
bubble speed can be determined by the relationship between tip curvature and AP in 
the 9 = 0 case, and that downstream suction does not determine the bubble velocity. 
In addition, at low Ca the bubble tip is a semicircular cap that spans the void between 
the fluid covered channel walls, so AP - l/(L- 1) - 1/L. Substituting into (5 .6) ,  

AP = ( L  - h,) r - Khr - ~ ( 3 C a ) ~ ’ ~  as Ca --f 0. (5 .6)  
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FIGURE 17. Comparison of flexible-walled system with parallel channel behaviour. 
(a)  Dimensionless bubble width ; (b) dimensionless bubble pressure. 

From this result, the ratio of bubble width to channel width, p = 1 - 1/L, is given by 

,8 = 1 - 1.33Ca2I3 as Ca+O. (5.8) 

This power law relationship is identical to that found by the asymptotic analysis of 
two-phase flow in a rigid channel (Bretherton 1961 ; Park & Homsy 1984). Figure 17(a) 
demonstrates this relationship and compares the asymptotic result from (5.8) and the 
parallel-walled channel results determined by the boundary-element method (Halpern 
& Gaver 1994) with the flexible-channel predictions made by both lubrication theory 
and the boundary-element method. Clearly these parallel-wall channel results match 
the flexible-channel results for small to intermediate Ca. The range over which the 
approximation is accurate depends upon the wall tension and elastance. Increasing r 
and decreasing 7 extends the range over which the parallel-wall channel results provide 
good representations of the flexible-walled behaviour. 

The good comparison between the parallel-wall predictions and the flexible-channel 
behaviour is due to the fact that at small Ca, the flexible-channel system is 
characterized by small wall slope and curvature (figure 5a). In this situation, the 
pressure decreases nearly linearly downstream of the bubble tip (figure 6a). The nearly 
constant aP/ax and essentially parallel walls result in an approximately parabolic flow 
field, providing downstream flows in the neighbourhood of the bubble tip that are 
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similar to the end condition for two-phase flow in a rigid channel (Halpern & Gaver 
1994). Unlike the rigid-channel problem, however, the flexible-walled case has 
predefined bubble film thickness, H,  which must be satisfied by the macroscopic 
conservation of mass between the upstream and downstream ends of the channel. 
Nevertheless, at low Ca, the flexible-walled system responds so that the dimensionless 
bubble width, ,!l, behaves in a manner very similar to that of the parallel-walled rigid 
channel, as demonstrated by figure 17 (a). 

This result provides another explanation for the left-hand branch of the Pb-Ca 
response. At low Ca, the flexible-walled structure behaves nearly as parallel-walled 
channel. The dimensionless bubble width responds as in the parallel-walled system, and 
thus at low Ca a reduction in Ca causes the bubble width ( p  = 1 - H/L* = 1 - 1/L)  to 
increase monotonically, with the limit of /?+ 1 as Ca + 0. Since the film thickness H is 
fixed, the upstream dimensional channel width L* must increase with decreasing Ca. 
This can only occur by increasing the bubble pressure, Pb, to spread the channel walls 
(increase L), since L = Pb/r+  1. For this reason, a decrease in Ca leads to an increase 
of Pb, as seen in figure 14. This relationship is given by 

(5.9) 

which is consistent with the result from scaling arguments given above in (5.1). 
Figure 17 (b) shows the parallel channel approximation of the bubble pressure where 

/3 = Pchannel are data taken from the parallel-walled rigid-channel analysis published in 
Halpern & Gaver (1994). This figure shows that such an analysis is capable of 
predicting small Ca behaviour over a wide range of r. This derivation also explains the 
linear relationship between Pb and r shown in figure 10(a) for large r, where the walls 
are nearly parallel. Note, however, that this analysis cannot predict the onset of the 
right-hand branch of the p6-Ca relationship, and does not discriminate between walls 
that have different values of since, as we have shown above, the wall shape is 
determined by elasticity in this regime. 

6. Discussion and conclusions 
In this study, we have presented analysis of a semi-infinite bubble being forced 

through a compliant channel as an initial model of pulmonary airway reopening. In 
this section, we compare the results of this study to the general characteristics observed 
in benchtop and in situ experiments to show the relevance to the physiological 
behaviour. Finally, limitations of our analysis are discussed. 

6.1. Pressure and shear stress scales 
A significant aspect of the experimental analysis conducted by Gaver et al. (1990) 
related to the evaluation of the pressure scale for the reopening experiments. In that 
analysis, it was found that y/R* was an appropriate capillary scale for P;, and 
collapsed the data from multiple experiments far better than the scale y / H .  In those 
studies, R* was the upstream tube radius, which was an independent parameter of the 
study. In the analysis herein, the equivalent pressure scale would be y/L*,  but is not 
an independent scale owing to the dependence on L* on Pz, and thus was not chosen 
as the fundamental scale for the analysis. Instead, y / H  was chosen as the fundamental 
stress scale. Nevertheless, we can now use the results of our calculations to determine 
the physical scales for shear stress and Pz. 
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FIGURE 18. Pressure scale evaluation. Percentage change of ., P r / ( r / H ) ;  0,  P,*/(y/L*) as a 
function of r. Ca = 0.5, 11 = 100. 

From the results given in figures 9(b) and 12(b), it is evident that y / H  is an 
appropriate scale for shear stress, since the extremum values of the wall shear stress are 
nearly independent of r and 7. Therefore, it appears that the film thickness is 
instrumental in determining the shear stress in the system. In contrast, P t  does not 
appear to scale with y / H ,  as can be seen in figure lO(a). In this figure, 7 and Ca are 
held constant, and r is varied. Increasing Fdecreases the wall compliance, reducing L 
for a given Pb. The significant increase in Pb with increasing r suggests that the 
physically appropriate pressure scale may be y /L* ,  which can be understood by the 
macroscopic analysis of $2.4. To check this hypothesis, we re-analysed the data of 
figure lO(a) using the pressure scales Y / H  and y /L*  and examined the percentage 
change in these dimensionless pressures arising from modification of wall elastance 
over the range 0.05 < r < 2 with Ca = 0.5, and 7 = 100. The results of this analysis are 
given in figure 18, which shows that at low r, the percentage change in P:/(y/L*) is 
far smaller than that of P,*/(y/H),  showing that P; scales with y/L*.  This scaling 
appears to become less valid when r increases, corresponding to activity along the left- 
hand branch. So, in summary, at small to moderate Ca on the right-hand branch, the 
bubble pressure in highly compliant systems scales approximately with y /L* ,  while 
wall shear stress scales with y / H .  

6.2. Yield pressures 
Another significant result of the benchtop airway reopening studies was the 
identification of yield pressure phenomena. In these experiments, the yield pressure 
(P&ld) was taken to be the pressure corresponding to the zero-Cu limit of steady-state 
reopening. This pressure is thought to correspond to the pressure that must be 
exceeded in order to initiate reopening. Macklem (1971) originally proposed that such 
a pressure would exist, but thought that P;i,,, - 2y/R*, owing to the pressure drop 
across a hemispherical meniscus in a tube of radius R*. In a rigid channel, this would 
correspond to a P&ld - y /L* .  Experiments have not heretofore measured the true 
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start-up P&,, of these systems, but rather have reported an ‘apparent’ P&,, 
corresponding to the zero-Ca intercept of the steady-state reopening behaviour. 
Measurements by Gaver et al. (1990) showed an ‘apparent’ P;ie,, - 8y/R*, indicating 
that wall flexibility greatly decreased the bubble-tip radius of curvature. Naureckas et 
al. (1994) and Yap et al. (1994), used in situ models. and identified ‘apparent’ P&ld 
that were consistent with Gaver ef al.’s measurements. However, recent measurements 
by HSU et al. (1994) have shown ‘apparent’ P&,, as low as 3.1 y/R*.  The smaller value 
of the ‘apparent’ P&,, was attributed to measurements being taken at smaller Ca than 
the original measurements by Gaver et al. (1990). All of the above-mentioned benchtop 
experiments were conducted in compliant tubes, with complex reopening geometries 
and nonlinear wall behaviour, where the upstream radius was R*, but the tube buckled 
to a ribbon-like configuration at the bubble tip. For these reasons, these measurements 
of the ‘apparent’ P,*ield cannot be compared directly to the two-dimensional 
approximations described herein. It is more appropriate to compare these predictions 
to the recent studies by Perun & Gaver (1995 a, h) ,  who analysed two-dimensional 
channel models. Perun & Gaver (1995a) studied channels with highly nonlinear wall 
support in which the walls were highly compliant (r < 1) when uninflated, but were 
rigidly restrained (r >> 1) in the upstream inflated region owing to constraints imposed 
by two parallel rigid plates separated by a fixed distance, 2L*. These studies 
demonstrated an ‘apparent’ P&ld - 1.85y/L*. In channel experiments with nearly 
linear elastic support, which most closely resemble the models used in the analysis in 
this paper, Perun & Gaver ( 1  995 b) identified an ‘ apparent’ P:jpld of approximately 13 
to 16.5y/L*. 

Unfortunately, owing to the left-hand branch behaviour, an ‘apparent’ P&,, from 
the analytical model cannot be approximated by the Pb corresponding to the zero-Ca 
intercept. Instead, a minimum of the Po-Ca relationship exists that reflects the 
minimum pressure, Pmzn, in which a steady-state response is expected to exist. As 
shown in figure 14, Pmin is a function of both r and q. At low Ca, the influence of y 
is minor, since the system is dominated by wall elasticity ($5.3),  so Pmin is most strongly 
influenced by f. The influence of r on P:tn is partially identified by scaling P2in with 
y /L* ,  as discussed above. Figure 19(a) presents these data, and shows that PZi,/(y/L*) 
is further influenced by a decrease in r owing to the decrease in the Ca corresponding 
to Pmin. This result shows P:LLn - 6y/L* for r= 0.05; however, Pzin may decrease 
further with increasing channel compliance (decreasing r). With decreasing r, this 
result may approximate the ‘ apparent ’ P&Ed from experimental measurements using 
highly compliant channels. However, this is not the actual PYirld that would occur at 
system start-up. 

To predict the true Pci,,, of the system, we define the yield pressure to be the largest 
bubble pressure for a static circular meniscus in the compliant channel. We assume that 
the wall is dry upstream of the bubble tip, with constant pressure, Pb. Downstream, the 
system is static, so P = 0. At yield, Pb = P&,, and the bubble is circular with radius 
l /Puzf ld  and meets the wall tangentially. We define the contact line as existing at x = 
x,, with the bubble tip centred at x = 0. Then, the equation for the meniscus shape is 
given by 
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The wall shape is calculated using the lubrication approximation of the wall equation 
(3.3), resulting in A and B. x, and Pyiezd are determined by satisfying continuity of 
position and slope of h at x = xc, with the meniscus intersecting the wall tangentially, 
s o f =  h, f ,  = h, at x = x,. Comparison between numerical solutions of this system and 
asymptotic solutions based upon (r/7)1’2xc 1 (small meniscus slope at x,) show that 
the approximate solutions are accurate for 7 % 1 ,  a condition that also assures that the 
lubrication approximations used in deriving (6.2) are valid. A representative profile of 
the steady-state system at yield is given by figure 19(b) for r = 0.05 and 7 = 100. This 
analysis shows that the results are insensitive to 7 to 7 % 1, and 

The derived relationship (6.3b) is given in figure 19(a), and shows that P:ield/(y/L*) < 
P;,,/(y/L*). From (6.3b), 

These are the rigid-channel and the infinitely-flexible-channel results, respectively. 
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Equation (6.3 a)  shows that increasing wall flexibility decreases P&ld/(Y/H) by 
increasing the upstream channel width. However, the limits given by (6.4) show that 
wall flexibility can decrease the meniscus radius of curvature to half of the upstream 
channel half-width, which doubles the P$,, that would be expected based solely upon 
a rigid-channel analysis using the upstream channel width, the approach originally 
taken by Macklem (1971). This result most closely matches the measurements by Perun 
& Gaver (1995a) (P:teld - 1.85y/L*). However, the prediction greatly underestimates 
the 'apparent ' PZteld from Perun & Gaver (1995 b), and tube experiments by Gaver et 
al. (1990) and Hsu et al. (1994). The discrepancies between tube measurements and 
channel predictions are likely to be due to differences in the meniscus curvature 
associated with the three-dimensional buckling of the tube near the meniscus tip. This 
rationale is not sufficient to explain the large discrepancy with the measurements by 
Perun & Gaver (1995 b). Instead, as will be discussed below in 96.3, this variance may 
be attributable to stability behaviour. 

6.3. Stability 
The multiple branch behaviour of the Pb us. Ca relationship suggests the possibility of 
instability of one, or both, of the branches of the response curve. The analysis 
presented in this paper does not use a time-dependent approach that could be used to 
investigate the stability of each of the branches. However, it is useful to consider the 
data in relation to experiments conducted in flexible-walled systems to develop an idea 
of the stability behaviour that one might expect. 

In experimental investigations, either Pz or the flowrate of air (Q*) are set, and the 
corresponding P,* - U relationships are measured. Theoretically, U is multi-valued for 
a given Pz, so pressure-driven experiments and time-dependent simulations with fixed 
P t  might show unsteady behaviour near unstable branches that could include the 
migration from an unstable steady branch to the stable branch. Flow-rate-driven 
experiments cannot show this behaviour, since P t  is a single-valued function of Q*. 
Nevertheless, stability characteristics can be ascertained from those types of 
experiments. Recent experiments by Gaver et al. (1990), Perun & Gaver (1995a, b) and 
Hsu et al. (1994) employed flowrate-driven systems. 

Of these experiments, those of Perun & Gaver (1995b) most closely resemble 
conditions posed by the theory described herein. In particular, these experiments 
evaluated the steady-state response of a bubble constrained within a channel with one 
rigid, and one nearly linearly-elastic wall. Although it is beyond the scope of the 
present paper to provide a detailed comparison between the experimental and 
theoretical results, the experiments did show characteristics predicted by the theory. 
For example, the experiments showed an increase in Po with increasing r and 7. 
However, these studies did not demonstrate left-hand-branch behaviour with r = 0.01 
over the range 0.1 < Ca < 8 and r = 0.6 over 0.8 < Ca < 10, where rexp = Kexp P / y  
was based on the elasticity (Kezp )  of the compliant channel wall. Unfortunately, the 
minimum Ca for these experiments is greater than the transitional Ca predicted by the 
theory (strict comparison between the rexp and rtheory must be made with caution). 
Smaller values of Ca were not reported owing to a lack of steadiness of Pb. So, this 
evidence suggests that the left branch of the C-Ca relationship may be unstable. In 
addition, according to the results of 9 6.2, steady-state meniscus motion cannot exist 
when PEteld < Pt < P2tn.  This provides further evidence for left-hand branch 
instability. 

Other related experiments by Gaver et al. (1990), Perun & Gaver (1995a) and Hsu 
et al. (1994) used systems with highly nonlinearly elastic walls. None of these studies 
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reported data consistent with the left-hand branch of the Pb-Ca relationship. However, 
Perun & Gaver (1995a) analysed the P t  steadiness during their experiments. They 
found that although the average Pb decreased with decreasing Ca (consistent with the 
right-hand branch), data from Ca < 0.5 was increasingly unsteady. Interestingly, data 
from the unsteady measurements, when averaged, followed a monotonic trend that was 
continuous with the large Ca (right-hand branch) steady-state response. For highly 
compliant systems, this unsteady branch may be very short, since Pmin occurs at very 
small Ca. In this case, the resulting ‘apparent ’ Pzt,,, nearly equals the theoretical 
prediction of P;iield, as demonstrated by Perun & Gaver (1995a). For less compliant 
systems, the experiments suggest that low Ca behaviour, when averaged, results in an 
‘apparent’ P;(,,, that does not correspond to static predictions of the true P;teld, as 
demonstrated by Perm & Gaver (1995b). So, the unsteady left-hand branch, if it exists, 
may not connect to the static prediction of P&,, unless r 4 1. This hypothesis is 
speculative, since the experimental systems do not completely mimic the theoretical 
model. 

6.4. Limitations 
As with any model study, this investigation includes simplifications that limit the model 
validity and the degree with which the model can be compared to true physical systems. 
The major assumptions of this study relate to simplifications of the wall equation 
leading to (2.4). We assumed that owing to inextensibility, shear stress would result in 
variation in T, but would not lead to tangential extension of the wall. However, we 
further assumed that the shear stress-induced variation of wall tension did not greatly 
modify the wall tension from the average wall tension in the system. A macroscopic 
control-volume analysis of the x-component of linear momentum using a control 
volume surrounding the entire domain shows that this global variation in wall tension 
is AT = P: L* - y ,  where AT is the tension difference between the far upstream and 
downstream ends of the domain and L* is the upstream channel half-width. This 
variation is negligible if P;/(vT) G 1. This relationship is satisfied in all simulations 
within this study with the exception of the 7 = 2 calculation in figure 16, which was 
used only for illustrative purposes related to turnaround behaviour. 

Another limitation relates to the model’s ability to mimic true airway geometrical 
characteristics. Actual airways are roughly circular when inflated, and collapse to a 
more complicated geometry. In the upstream region, the circular airway has a 
transverse component of curvature, which is neglected in the two-dimensional model. 
This curvature component is the source of capillary-elastic instabilities, which can 
cause meniscus formation if H/R* > 0.12 (Halpern & Grotberg 1992). By analogy, 
this result suggests that the reopened portion of the airway would remain patient if 
H/L* - r / P b  < 0.12, suggesting that low r (large compliance) may be important for 
preserving airway patency. Future studies should investigate how this behaviour 
influences reopening phenomena. 

We have also assumed that the collapsed region is planar, and that this dictates the 
meniscus geometry. By comparing the predictions from the present model to channel 
(Perun & Gaver 1995a, b) and tube (Gaver et al. 1990; Hsu et al. 1994) studies, it is 
evident that the three-dimensional buckling geometry can influence the reopening 
pressures. This buckling geometry may be much more complicated than the ribbon-like 
flattened mode investigated in the tube experiments. 

Furthermore, we have assumed that the airway walls are massless and are 
supported by a linearly elastic material. Clearly, these approximations are not 
completely accurate. From experimental measurements, we may infer that nonlinear 
wall responses may reduce, or eliminate, the left branch of the Pb-Ca relationship. 
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Finally, this study ignores the influence of surfactant on the bubble interface. In 
actual airway reopening, surfactant transport along the bubble interface and between 
the bulk fluid and the interface could greatly influence the interfacial stresses. This 
coupled physicochemical system may be of great importance towards understanding 
pulmonary mechanical behaviour, and will be the subject of future investigations. 

6.5. Summary 
In this paper, we have developed and analysed an initial model of pulmonary airway 
reopening. This model includes the interaction between fluid and structural forces as 
a finger of air is forced through a compliant channel. We have shown that two 
important regimes of the flow behaviour exist. The first (left-hand branch) occurs when 
Cu < min (1, (P/v)”~), and is governed by the interaction of surface tension and 
elastic stresses. In this regime, a decrease of Pb increases the reopening velocity. This 
is due to a shortening of the transition segment connecting the fully inflated airway to 
the fully collapsed region, decreasing the resistance to flow. Another regime (right- 
hand branch) occurs when max (1, (r3/7)”’) < Cu < )?. This regime is governed by the 
balance between fluid viscous and longitudinal wall tension forces, and results in a 
monotonically increasing P,-Cu relationship. Increasing 4 or decreasing r reduces the 
Cu associated with the transition from one branch to the other. 

Start-up yield pressures are predicted to range from 1 d P$&(y/L*) d 2, with 
highly compliant walls decreasing the meniscus curvature, thus increasing 
P;ield/(y/L*). However, predictions of minimum pressures for steady-state reopening 
show that Pk,,/(y/L*) - 6y/L*  for highly compliant channels (r = 0.05). Since 
P&ld < P;,,, this suggests that low Cu reopening may be unsteady, a behaviour that 
has been observed experimentally. Experimentally, this unsteady behaviour, when 
averaged, appears to continue monotonically from the right-hand branch of the P,-Cu 
relationship. 

Finally, our predictions are consistent with experimental observations that show the 
bubble pressure in highly compliant channels scales with y /L* ,  where L* is the 
upstream channel width. In contrast, we find that wall shear stresses scale with y / H .  
The wall shear and normal stresses occurring during reopening are potentially very 
large and may be physiologically significant. 

D.P.G. appreciates the many helpful discussions with Drs J. Solway and R. W. 
Samsel related to the development of this study. This research was funded by NSF 
grants BCS-9358207, BCS-9209558 and CTS-9013083, NIH grant HL51334, NASA 
grant NIG-3 1636, NATO grant CRG-950725 and the Whitaker Foundation. 

Appendix A 

boundary conditions for regions I and 11. 
In this Appendix we derive the linear lubrication approximations that are used for 

Region 1 
Conditions at the upstream end of region I, x-t - a, which are needed to solve (3.6), 

are obtained by linearizing equations about h = L andf= L-  1. To do so, we obtain 
a uniform perturbation expansion by letting 

h = L + ehl + c2h2, 

,f = L - 1 + €fl + e2f2, 



62 D. Guver III, D. Hulpern, 0. Jensen and J.  Grotberg 

where c < 1 represents the magnitude of the deviation from the uniform upstream 
conditions. At O(e) we get the following system: 

Th; - yhp’ = - 3Ca(h, - f J ,  1 
J;’ + yhr = Th,. 

The solutions for h, andf, are exponentials of the form em“ where m satisfies a quintic 
polynomial, 

It can be shown that for any y, T and Cu, the above polynomial has two positive real 
roots m, and m,, provided 7 + 0. If 7 = 0 then there is only one positive real root. 
Hence the functions h, andf, that decay as x - t -  co are given by 

ym5-Tm3-3Ca(y+ 1)m2+3CuT= 0. (A 3 )  

h - A ernix+Bemz” = 1 -  

where A and B are free parameters that are varied until the desired shapes are obtained 
at the downstream end. At O(c2), we get the following system for h,-and f , :  

1 Tht - Thi = 9 C ~ ( h ,  -f,), - 3 C ~ ( h ,  -f,), 
r i+yhi  = Th,. 

In this case only the particular solutions need to be determined: 

h, = b, e f  + b, ei + b, el e,, 
f ,  = c, e f  + c, ei + c3 el e,, 

where 

I K ;  bi = -9Caaj 
(yKS - TKj3 - 3C47 + 1 )  Kj” + 3Ca T)’ 

for j = 1,2,3, and where Ki = 2mj for j = 1,2, K3 = m, +m,, aj = L; for j = 1,2, a, = 
2L1 L, and Li = 1 + 7 - T/(m;). 

Region II 
The boundary condition as x+ co for (3.7) is obtained by linearizing about h = 1 ,  

using the regular perturbation expansion h = 1 + eh, + O(e2). At O(e), this expansion 
gives yhy - Th; - 3Cuh, = 0. The possible solutions are given by 

h, = C ern,” + D ern,” 

h, = (C+ Dx) ern,” 

(A 8 4  
cu2y 4 

173 ’BT h, = em3“(C sin m4 x + D cos m4 x) if ~ 

where m3 < 0, m4 < 0 in (A 8u), m3 < 0 in (A 8b) and m,+im, with m3 < 0 in (A 8c) 
are the roots of the characteristics equation ym3-Tm-3Cu = 0. 
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AB BC CD DE EA 
Location .x = X r i g h t ,  Y = Yro X = X I L p h t >  y = 0 X = 0, y = 0 x = Y = Y ,  X = X k f t ’  Y = y ,  
Boundary 72.. A U 7r.  <, ‘z. D ‘z, E 

conditions c T Y .  R 1’ 7 Y .  D T Y .  E 

U 7r .  c T r ,  D T z ,  E ‘ x ,  A 

U T Y .  B U 7Y. D ‘Y. E 

TABLE 1. Boundary conditions applied to corner nodes of the computational domain. Entries above 
the dashed line represent conditions applied on the element preceding the corner node (in the 
counterclockwise direction), and entries beneath the dashed line represent conditions that following 
the corner node. Subscripts represent the stress component and the associated element. 

Appendix B 
This Appendix describes implementation considerations that were significant for 

evaluating the boundary-element computations of this problem. 
Owing to discontinuities in the normal directions at the juncture between corner 

elements, it is necessary to impose stress discontinuities at the corner points as 
described in (Halpern & Gaver 1994). This stress-vector discontinuity is due only to a 
discontinuity in the normal vector at the corner, and has no other physical significance. 
In our computations, we use a corner-point conditions that specify at least one stress 
on each of the element nodes that connect to the corner, as described in table 1. 

As described by (2.3), stress jumps across the air-liquid interface and elastic walls are 
related to the domain curvature, K~~~ = V ; n .  The curvature was computed at each 
interface and wall node I by 

where the subscript s denotes differentiation with respect to the arclength s. The 
arclength to each node ( s i )  was computed by integration xi vs. yi using a quadratic 
spline approximation to the interface shape. Cubic splines along the air-liquid interface 
were computed for xi vs. si and y i  us. si, with specified derivative conditions at the 
meniscus tip to ensure interfacial symmetry. We used a non-uniform distribution of 
points along the air-liquid interface to concentrate interface points near the meniscus 
tip, since the curvature changes rapidly near this location. The point distribution was 

where i = 1 designates the location of the air-liquid interface tip, i = N specifies the last 
point on the interface, and stotal is the total meniscus arclength. Wall points were 
distributed uniformly. 

When coupling solutions using the boundary-element method, we found it 
convenient to rescale the boundary-value problem using the scales 

x+ = L*x, u* = uu, P* = P; P. (B 3) 
Here, the lengthscale, L* = ( P t / K +  H ) ,  represents the upstream channel half-width, 
and is chosen for several reasons. First, the lengthscale is likely to be related to the 
meniscus tip radius of curvature, as suggested by our previous experimental studies 
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(Gaver et al. 1990), and thus is useful in representing the meniscus tip pressure drop. 
Also, by scaling y* with L*, the scaled domain is in the range - 1 6 y 6 1, which is 
independent of Pb. Practically, this scale is useful in studying different bubble pressures, 
since rough similarity between the scaled domains for different values of pb exists. This 
facilitates the transition between domains when transitioning from one parameter 
range to another. Finally, by scaling x* with L*, the domain length increases with pb. 
This helps to assure that lubrication approximations are valid at the ends of the 
boundary-element domain. 
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